

Harnessing Machine Learning and Deep Learning methods to forecast whitecap fraction and sea-salt aerosol emissions in the ECMWF Integrated Forecast System (IFS-COMPO)

Nathan Capon<sup>1</sup>, Rose-Cloé Meyer<sup>1</sup>, Samuel Remy<sup>1</sup>, Magdalena Anguelova<sup>2</sup>, Jean Bidlot<sup>3</sup>, Josh Kousal<sup>3</sup>, Thierry Elias<sup>1</sup> and Antonino Bonanni<sup>3</sup>

<sup>1</sup> HYGEOS, Lille, France

<sup>2</sup> NRL, Monterey, U.S.A

<sup>3</sup> ECMWF, Reading, U.K.



1





Current status of sea-salt aerosol emissions in cycle 49R1 IFS-COMPO:

• The whitecap fraction (WF) is estimated by the **Albert** et al. (2016) parameterization:

 $WF = a(SST)[WSP + b(SST)]^2$ 

• Sea-salt aerosol emissions are derived using the **Gong** (2003) assumed size distribution

$$(WSP,SST) \xrightarrow{A16} WF \xrightarrow{Gong} Sea-Salt$$

**Our objective :** Estimation of whitecap fraction and sea-salt emissions in IFS-COMPO with deep neural networks (DNN) by :

- 1. Training offline a DNN model to estimate whitecap fraction
- 2. Integrating this DNN model into IFS-COMPO



## INPUT AND TRAINING DATASETS OF THE OFFLINE DNN MODEL

#### **Dataset description**

**Ground truth** : Whitecap fraction (WF) at **10.7** and **37** GHz derived from remote sensing (Anguelova et al 2019)

**Time range :** 2 years of data with an hourly resolution

Predictors : 8 predictors collected

From ERA5 :

- Wind Speed
- Wind Direction
- Sea Surface Temperature
- Mean Wave Period
- Significant Wave Height

From HINDCAST :

- Total Wave Height
- Significant Wave Height
- Dissipation of turbulent energy from breaking waves

Dimension : around 200 millions pixels



Example of daily map of whitecap fraction from Windsat acquisition [Anguelova et al.]

#### 10-12-2024



# **OFFLINE DNN MODEL ARCHITECTURE**



Description of the Deep Neural Network (DNN) model architecture and pre- and post-processing operations

10-12-2024



# RESULTS OF THE OFFLINE DNN MODEL AND COMPARISON WITH OTHER METHODS

Following results have been obtained by launching a **6 months** simulation

Main comments:

- Arithmetics models (Monahan 80, Albert 16) show a low bias as compared to our dataset
- DNN **outperforms** arithmetic models
- DNN manages to score better than a simple neural network architecture (MLP)
- No dependency to SST found



Pearson correlation score versus Mean Squared Error (MSE)



# RESULTS OF THE OFFLINE DNN MODEL AND COMPARISON WITH OTHER METHODS

DNN outperforms arithmetic models and a simple neural network architecture (MLP)



Simulated (y axis) versus observed (x axis) whitecap fraction (WF) in %

# WHITECAP FRACTION AT 10 GHZ

State-of-the-art arithmetic models (Albert 16) are **not adapted** to our dataset ⇒ Use FMI parametrisation

- Our model  $\rightarrow$  37 GHz
- FMI model  $\rightarrow$  **10,7 GHz**
- ⇒ Duplicate my work and train my models at this whitecap fraction frequency.

Nevertheless, it is quite long. So, I did not finish yet, but it is on going.



Representation of the whitecap fraction (WF) at both frequencies according to the wind speed (WSP)



# **INTEGRATION OF THE DNN INTO IFS-COMPO**

Incorporation of a **reduced version** of the DNN to make an initial estimate of its impact on the skill of simulated AOD over oceanic surfaces

 Reduced model: only 2 predictors (Wind speed / Sea Surface Temperature)

The **INFERO** library has been integrated into IFS-COMPO to interface with Deep Learning models

*Interest* : runs a learning model in ONNX format from a Fortran script

Representation of the incorporation of our model into IFS





### **EXAMPLE OF IFS-COMPO SIMULATED WHITECAP FRACTION**



Simulated whitecap fraction by IFS-COMPO on 1/1/2017 OUTC, using the operational A16 scheme (left), and with deep learning model (using 5 predictors) enabled through the INFERO library (right).

10-12-2024



Visual comparison between DNN model in IFS-COMPO (left) and offline DNN model (right) with 5 inputs



Predictions are pretty **close** but not exactly equal. However, it should be linked to input data differences

10-12-2024



### IMPACT ON SKILL SCORES OF SIMULATED SURFACE NA / CL

Skill scores of simulated AOD are very close. Larger impact noted in simulated Na<sup>+</sup>/Cl<sup>-</sup> at surface versus EBAS observations:



Simulated and observed daily Na<sup>+</sup>(left) and Cl<sup>-</sup> (right) versus EMEP observations



## **FEATURES SELECTION**



Explained variance Noise 4.6 1.3 1.1 0.59 0.31 0.091 0.069 0.012 Signal

#### Motivations :

Better comprehension of features importance and their contribution

The more input predictors there are, the greater the probability of overfitting

Ideas :

Apply more sophisticated approaches (Qlattice fitting, Lasso CV selection)

Description of principal components according to input features

10-12-2024

#### **GA CAMAERA**

0



## **GENERATION OF DATASET FOR SPATIAL MODELS**

Image showing the Whitecap Fraction in an area extracted from a Windsat orbit



Extraction of 16x16 tiles with 60% overlap



10-12-2024



## **IMPLEMENTATION OF MODELS WITH SPATIAL INTERESTS**



#### Example of CNN architecture

#### **Convolutional Neural Network (CNN)**

<u>Description :</u> Encode spatial information (texture, surrounding, ...) before using DNN model

#### Advantages:

- Spatial interest (Matrix to pixel approach / Texture Extraction)
- Avoid outliers
- Gives meaning to certain entries (WD)

#### Drawbacks:

- More time consuming
- Difficult to replicate in IFS-COMPO

#### 10-12-2024



### **IMPLEMENTATION OF MODELS WITH SPATIAL INTERESTS**



#### **UNet (Encoder-Decoder)**

<u>Description</u>: Condenses and processes the inputs in a latent space before bringing it all back to the original resolution

#### Advantages:

- Spatial interest (Matrix to pixel approach / Texture Extraction)
- Avoid outliers
- Speeds up calculation time

#### Drawbacks:

- Require more data to be trained
- Difficult to replicate in IFS-COMPO

#### 10-12-2024



# **INCOMING DEVELOPMENTS**

#### Coming next

- Finish the implementation of models with spatial interest (CNN / UNet)
- Improve offline model calibration and test new hyperparameters (loss function, input data representation, etc.)
- Carry out a more specific study for the selection of input features
- Carrying out a full sensitivity study and further analysing the output results at both whitecap fraction frequencies



Animation of Whitecap fraction estimated from our DNN model



# CONCLUSION

# THANKS FOR LISTENING









## WHY LOSS FUNCTION IS IMPORTANT IN OUR CASE



#### WhiteCap Fraction distribution

The **loss function** measures how well or poorly a model's predictions **match** the actual outcomes.

By adjusting the model's parameters to reduce the loss, the model learns to make **more accurate predictions**. It's crucial because it **guides** the model's **learning process**.

In our case, an adapted loss function enables us to prevent the model from ignoring minorities.

10-12-2024



# **FROM 2 TO 5 FEATURES**

#### Evaluation of performance for DNN models with different numbers of inputs in IFS-COMPO



Improvement : Better retrieve of high whitecap fraction values without degradation on low values

10-12-2024