

Evaluation of BVOC Emission parametrization against local flux observations.

Jhilik Majumdar and Vincent Huijnen

CAMAERA General Assembly Lille, 4-5 June 2025

CAMAERA

Introduction

- Biogenic Volatile Organic Compounds (BVOCs) are non-methane hydrocarbons emitted by vegetation and soils, constituting roughly 90 % of the total atmospheric VOC budget. They are highly reactive, influencing tropospheric photochemistry, ozone formation, and secondary organic aerosol production.
- Emission rates are driven by environmental factors—primarily temperature, solar radiation, vegetation type, seasonal cycles, leaf age, and ambient CO₂ levels—that modulate enzymatic activity in plants.
- Recent advances now allow dynamic, daily-updated simulations of biogenic sources (e.g., CAMS global analyses) to be coupled with chemistry models, improving air-quality forecasting.
- The MEGAN-style online BVOC model integrates vegetation characteristics (Leaf Area Index, plant functional types) with activity factors (temperature response, light scaling, LAI, leaf age, CO₂ inhibition) to compute net isoprene emissions under variable meteorology.
- By combining a predetermined base emission factor with these multiplicative modifiers, the model yields a total emission estimate that reflects both canopy environment and seasonal dynamics.

Isoperene Daily emission : model vs data.

• b20d: Uses standard surface fluxes for each land use category, serving as a baseline for comparison.

b2ow: Incorporates offline emission potential fields (EPF) specifically for isoprene emissions, refining biogenic VOC estimates..

- Observed isoperene emissions from the data show a significantly higher peak emission rate compared to the modeled values, particularly during midday (around 12:00–15:00 UTC).
- The model underestimates the emission intensity during peak daylight hours.
- Modelled emissions closely follow the expected diurnal pattern, with near-zero values during nighttime and a clear peak during midday due to higher sunlight and temperature activity.
- The observed data suggests a higher emission peak that the model does not capture. This discrepancy might be due to underestimations in the input activity factors like leaf age, LAI, or light activity factors.

Offline box-model set up

Study Site: Vielsalm eddy-covariance tower (50.30 °N, 5.90 °E) in a temperate forest canopy of the Belgian Ardennes.

Well-Mixed Canopy Layer:

• Height varies hourly with ERA5 PBL: \sim 500 m at night $\rightarrow \sim$ 2000 m by midday.

Forcing (MEGAN v2.1 online):

- LAI: fixed at 3.0 m² m⁻², Temperatures: soil = 290 K; skin = 295 K, CO₂: 410 ppm
- Emission potential : 2.88 mgm⁻² hr⁻¹

Campaign: May 1 – Oct 1, 2009 & 2010 **Flux Characteristics**:

- **Observed Peak**: $\approx 5 \text{ mg m}^{-2} \text{ h}^{-1}$ (daily mean)
- **Model Comparison** (H3, SEF = $2.88 \text{ mg m}^{-2} \text{ h}^{-1}$):
- 2009 bias = -8.5 % (r = 0.92)
- 2010 bias = -1.0 % (r = 0.91)

Purpose:

Isolate the MEGAN emission formulation under controlled meteorology, chemistry, and transport for direct comparison to Vielsalm observations.

Observational and meteorological data

VOC Flux Observations

- Instrument & File: PTR-MS eddy-covariance flux (Flux_M69)
- Units: $\mu g \ m^{-2} \ s^{-1} \rightarrow$ converted to $mg \ m^{-2} \ h^{-1}$
- **Time Info:** Local timestamp → extract hour, day, month for diurnal/seasonal analysis

Meteorological Forcing

- Air Temperature: 2 m T₂m from ERA5
- Radiation: SSRD (J m⁻² per 3 h) \rightarrow PPFD (µmol m⁻² s⁻¹) via × 4.6 conversion
- **Boundary-Layer Dynamics:** Wind speed \rightarrow ERA5 PBL height (500–2000 m) for entrainment

The observed surface-downward shortwave radiation across Europe from May through October 2010, highlighting the seasonal increase in solar input that drives isoprene emission variability.

Box model : detailed description

- 1. Base emission factor : $2.88 \text{ mgm}^{-2}\text{h}^{-1}$ (Bauwens et al , 2018)
- 2. Temperature response :

$$\gamma_T = rac{Z_E\, Z_{C2}\, \expig(Z_{C1}\,Xig)}{Z_{C2} - Z_{C1}ig[1 - \expig(Z_{C2}\,Xig)ig]},$$

$$X = rac{1}{T_{
m opt}} - rac{1}{T_{H}}, \hspace{1em} Z_{E} = 1.75 \, \expigl(0.08 \, (T_{
m daily} - 297 \, {
m K}) igr).$$

3. Light (PPFD) Response:

$$\Phi' = rac{\Phi}{3000}, \hspace{1em} \gamma_P = \maxig(0, \hspace{1em} 2.46 \hspace{1em} \Phi' \hspace{1em} [1 + 0.0005 (\Phi_{ ext{daily}} - 400)] - 0.9 \hspace{1em} \Phi'^2ig)$$

- $\mathbf{Z}_{\mathbf{E}}$ is the activation-energy term that sets the maximum value of the γ_{T} curve.
- T_{opt} : optimum temperature where the emission gets its peak.
- z_{C1} and Z_{C2} : two parameters controls the γ_T slope.

- Φ' shows how bright it is now.
- Φ : PPFD at a given hour.
- Equation is derived so that if the day as a whole was especially sunny

4. LAI response : $\gamma_{\text{LAI}} = 1 \times \frac{0.49 \text{ LAI}}{\sqrt{1 + 0.2 \text{ LAI}^2}}$ (for LAI = 3.0)

5. CO2 inhibition:

$$\gamma_{CO_2} = 1.344 - rac{1.344\,(0.7\,C_a)^{1.4614}}{585^{1.4614} + (0.7\,C_a)^{1.4614}}, \quad C_a = 410 \; {
m ppm}$$

6. Canopy emission factor :

$$\gamma_{CE} = \gamma_{LAI}\,\gamma_T \Big[(1-LDF)+\gamma_P\,LDF\Big], \quad LDF = 1.0$$

7. Final Flux :

$$F=EF_0~ imes~\gamma_{CE}~ imes~\gamma_{CO_2}~~\left[\mathrm{mg\,m^{-2}\,h^{-1}}
ight]$$

- CO₂ is very low, leaves produce isoprene at their "full" rate 1.344,
- Higher $CO_2 \rightarrow Less$ isoprene per leaf area.

Diurnal Cycle of Isoprene Emissions : Model vs. Observations at Vielsalm

- Both model (red) and observations (blue) show near-zero night flux, rapid sunrise ramp, and afternoon decline.
- Morning ramp and fall-off timing are well captured across all months. Model underestimates peak midday flux by ~10–20 % in midsummer (July–August).
- Seasonal Trend:
 - Peak amplitude rises from May $(\sim 0.56 \text{ mg m}^{-2} \text{ h}^{-1})$ to August $(\sim 1.18 \text{ mg m}^{-2} \text{ h}^{-1})$, then declines into autumn.
 - Model follows the seasonal shape but with muted maxima.

Diurnal and Seasonal model-observation comaparison

Diurnal cycles (May–Oct):

- Model captures sunrise ramp & afternoon decline
- Systematically underestimates midday peak by 10–15 % in midsummer

Daily-mean scatter :

• Generally linear ($r\approx 0.9$), but model underpredicts high-flux days

Monthly average hourly emissions :

- Seasonal decline from July (0.28 mg m⁻² h⁻¹ obs) to October (~0.02 mg m⁻² h⁻¹)
- Model follows trend but low by $\sim 10-15$ % in July/August

Daily Mean Flux Time Series (May–Oct 2009)

- Synoptic Variability: Model captures week-to-week trends and seasonal rise/fall.
- High-Emission Events: Observed spikes (e.g., late July, mid-August) exceed model peaks by up to $\sim 0.8 \text{ mg m}^{-2} \text{ h}^{-1}$.
- Overall Bias: Model slightly underestimates extreme flux days, though mean behavior is well represented ($r \approx 0.9$).
- Data Note: Observations from July onward; pre-July data pending integration.

Parameter tuning of γ_T

Midday peak misfit: The default temperature-response underestimates 12:00–15:00 UTC emissions.

Sensitivity control:

• $T_{opt, 0}$ shifts the temperature at which emissions peak. • α controls how sharply E_{opt} (the activation energy) grows with T_{opt} .

$$\gamma_T \;=\; rac{E_{
m opt}\; C_2\; \expig(C_1\,Xig)}{C_2\;-\; C_1ig[1-e^{C_2X}ig]} \hspace{.3cm}, \hspace{.3cm} X = rac{rac{1}{T_{
m opt}}-rac{1}{T_{
m air}}}{R_g} \hspace{.3cm} T_{
m opt} \;=\; T_{
m opt,0}\;+\; eta\,ig(T_{
m air}-T_0ig) \hspace{.3cm}, \hspace{.3cm} E_{
m opt} \;=\; D_0\; \expig[lpha\,ig(T_{
m opt}-T_0ig)ig]$$

Which parameters were varied? • $T_{opt,0}$: 310 \rightarrow 320 K (Δ = 1 K)

• $\alpha : 0.07 \rightarrow 0.09 \text{ K}^{-1} (\Delta = 0.002 \text{ K}^{-1})$

Fit Metric :

$$ext{RMSE} = \sqrt{rac{1}{N}\sum_{i=1}^{N}ig(F_{ ext{model}, ext{i}} - F_{ ext{obs}, ext{i}}ig)^2}$$

CAMAERA: Copernicus Atmosphere Monitoring Service AERosol Advancement

June 4, 2025

Parameter tuning of γ_T

0.0 - 4

0.2

0.4

0.6

0.8

Observed Daily Avg Emission (mg $m^{-2} h^{-1}$)

1.0

1.2

• T_{opt,0}=311.0 K

• α=0.07 K⁻¹

•**RMSE** =
$$0.143 \text{ mg m}^{-2} \text{ h}^{-1}$$

(~15% improvement over default)

1.4

Observed vs. Modeled Emissions: Default vs. Tuned

Default vs Tuned-2010 vs 2009-Params Models Default Model **Parameter tuning of** γ_T 2009-Params Model 1.4 Daily Average Isoprene Emission (July - October 2010): m⁻² h⁻¹) Observed vs Default, Tuned-2010, and 2009-Params Models 1.6 Observed Model (Default) (1.4 4 ²–¹ 1.2 1.1 Model (2009 Params) Daily Average Emission 0.8 040.2 0.0 2010-01-15 2010:101 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Observed Daily Avg Emission (mg $m^{-2} h^{-1}$) Date

- Applying 2009 γ_t parameters to 2010 data captures mid-July/mid-August peaks more accurately than other runs.
- The 2009-parameter time series aligns closely with the highest observed days, showing how small T_{opt} and α shifts drive peak-day emissions.
- In the scatter plot, high-emission points using 2009 parameters lie nearest the 1:1 line, improving peak-day agreement without skewing lower-emission values.

Observed vs. Modeled Emissions (July - October 2010):

Conclusion and Future Work

Conclusions

- The MEGAN framework reproduces the seasonal and diurnal timing of isoprene emissions (r \approx 0.9) but underestimates midsummer peak fluxes by ~15 %.
- Retuning the temperature response (γ_T) to $T_{opt} = 311$ K and $\alpha = 0.07$ K⁻¹ reduces daily-mean RMSE by ~15 % and more accurately captures high-emission days.
- The optimal γ_T parameters remained stable between 2009 and 2010, indicating a robust biochemical temperature response across varying meteorological conditions.

Future Work

- Integrate full-season flux data and hourly radiation, LAI, and soil/skin temperatures.
- Tune the γ_p (light-response) parameters—optimizing how the model scales isoprene emissions with varying solar radiation—to further enhance agreement between modeled and observed fluxes..
- Apply tuned γ_T in regional/global BVOC models to assess air-quality impacts.