

A POSSIBLE NEW DUST EMISSION SCHEME IN IFS-COMPO

Samuel Remy, Andreas Uppstu, Rose-Cloé Meyer and the CAMAERA team CAMAERA GA, 5 June 2025

Coordinated by

1

New dust emission scheme

New dust emission scheme adapted from the SILAM dust emission scheme, as kindly provided by Andreas. Dust emissions are parameterized as

$$A = Z_{snowfrac} * \frac{LAI_t - LAI}{LAI_t} * F_{LSM} * \max(u_{10} - u_{10,min})^3 * r^{-0.5}$$

Where

$$u_{10,min} = u_t + B * Z_{swet}$$

Where Z_swet is the relative soil wetness (0=dry, 1=soil capacity reached). B, LAI_t are constants. Z_nowfrac is the fraction of snow depth so that dust emissions are null if snow depth is >= 2cm. $r^{-0.5}$ Is derived from the surface roughness. 3 options have been tested:

- Surface roughness from ERS (Prigent et al 2012)
- Surface roughness from ASCAT provided by FMI
- Surface roughness from ASCAT modulated by orography

New dust emission scheme

- 3 options have been tested:
- Surface roughness from ERS (Prigent et al 2012)
- Surface roughness from ASCAT provided by FMI
- Surface roughness from ASCAT modulated by orography

 $u_{10,min} = u_t + B * Z_{swet}$

For threshold velocity U_t, a value of 5 m/s is used in the SILAM scheme. Here, we use a monthly 2D input derived from remote sensing from Pu et al (ACP, 2020) :

13-2-2025

CAMAERA – NCP Iceland

Evaluation versus AOD fron

2017 dust AOD at 550nm derived from FMI merge $\frac{10}{20}$ AOD product (Sogacheva et al 2020) $\frac{30}{40}$

5-6-2025

CAMAERA G

40°N

30°N

20°N

10°N 0°

10°S 20°S

30°S

40°S

50°S 60°S 70°S

80°S

180° 160°W140°W120°W100°W 80

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

20°E

NEW

60°E 80°E 100°E 120°E 140°E 160°E 180°

Evaluation versus AOD from remote sensing

RMSE of monthly 2017 dust AOD at 550nm against dataset derived from FMI merged AOD product (Sogacheva et al 2020)

2019 weekly simulated versus obs AOD at 500/1020nm, with AE < 0.3 filter (dusty obs only)

49R1 fc only ref (green), with new dust emission scheme (red)

2019 weekly simulated versus obs AOD at 500/1020nm, with AE < 0.3 filter (dusty obs only)

49R1 fc only ref (green), with new dust emission scheme (red)

2019 daily simulated versus obs AOD at 500nm, with AE < 0.3 filter (dusty obs only)

2019 daily simulated versus obs AOD at 500nm, with AE < 0.3 filter (dusty obs only)

2019 weekly simulated versus obs Angstrom exponent over all AERONET stations

49R1 fc only ref (green), with new dust emission scheme (red)

2019 weekly simulated versus obs Angstrom exponent over all AERONET stations

Evaluation versus PM10

2019 weekly simulated PM10 versus background rura 50

5-6-202

49R1 fc only ref (green), with new dust emission scheme (red)

13

Evaluation versus PM10

2019 weekly simulated PM10 versus background rural stations obs

Evaluation versus PM10 during Godzilla dust storm

June 2020 daily simulated PM10 versus South US obs

49R1 fc only ref (green, orange), with new dust emission scheme (red, gray)

5-6-2025