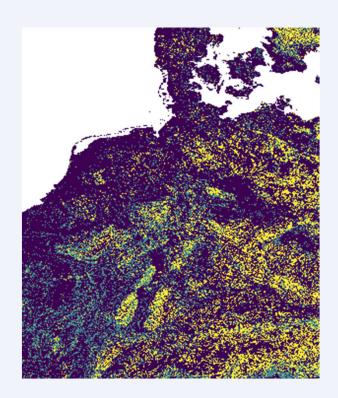


Cam aera GA m eeting June 2025

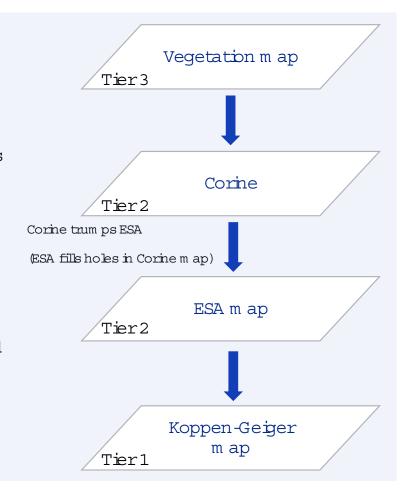
Dr.L.Geers, Dr.H J.Jonas, Dr.X.Ge



W ork perform ed w ithin W P5/6

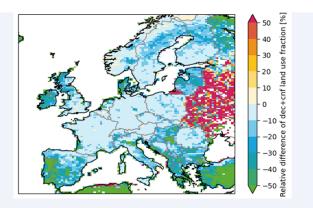
Detailing spatial and tem poral resolutions

- 1. Extended LOTOS-EUROS with 3-tiered Land Use Approach
- 2. Adapted deposition m odelparam eters pervegetation type
- 3. Investigated effect of adapted LAI and Growing Season (more on this in Hannah's presentation)
- 4. Investigated effect of adapted tree species & height in Germ an forests
- 5. Provided data for 0D aerosoldeposition m odelcom parison

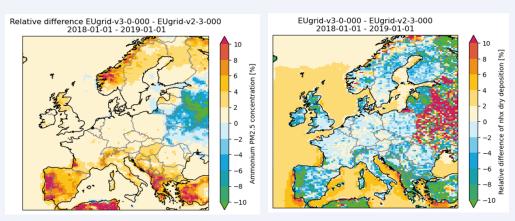

Most slides focus on Germ any because of input data availability at the time

Three-tiered Land Use Approach in LO TO S-EURO S

- The Land Use Modelin LOTOS-EUROS affects deposition of gases and particles, and biogenic emissions
- Land Use Modelused to be very coarse:
 - Only 9 different land use classes
 - No differentiation in clim ate zones & vegetation types
- Three-Tiered Land Use Approach → LU m ap m uch m ore detailed
 - Tier1:Clim ate zone
 - Tier2:Land Use Class (e.g., arable, urban, etc.)
 - Tier3: Vegetation Type



Effects of change to 3-TLU Approach

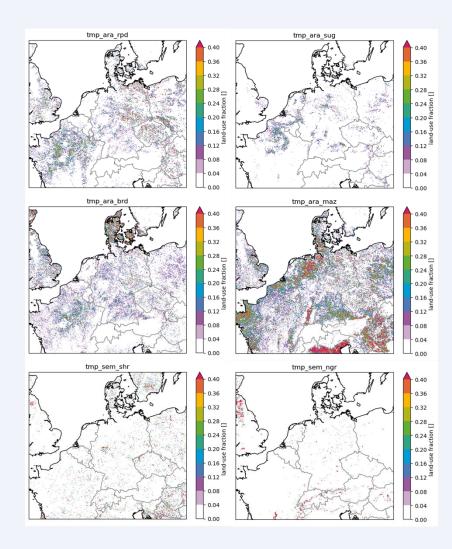

Changes to the LU m ap:

	-			
Dom ain	V2 3	V3 .0	Rem ark	
Outside EU	ESA 2000, EEA 2000	ESA 2015	Belarus, Ukraine, and parts of west Russia are defined by ESA2015	
W ater	Specific waterbody file	Corine 2018	Only visible at coastline	
Europe	Corine 2018	Corine 2018	Translation to m odelclasses changed	

- Most affected are:
 - Forest SE of EU, due to update to ESA 2015 (arable & crops → forest)
 - Coastline & som e w aterbodies → sea salt em issions & deposition
 - Mediterranean area: updated stom atal param eters
 - Moors, heathland & Sparsely vegetated areas
 Sem i-natural class
 - cover 40% in Norway

Relative difference forest LU class

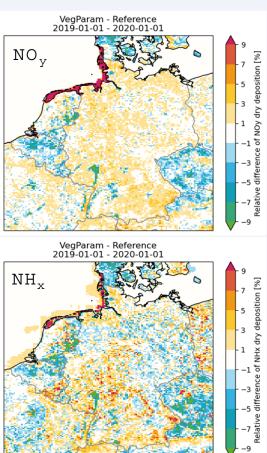
Relative difference of NH4 concentration and deposition flux



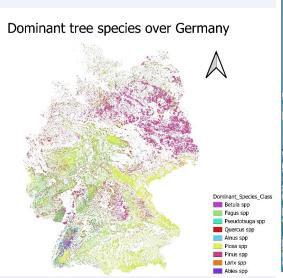
Updated vegetation param eters

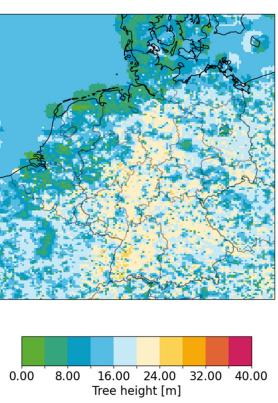
- Updated param eters (based on literature):
 - the full-grown vegetation heighth,
 - Stom atalparam eters like

```
tem perature dependence T_{\rm opt}, T_{\rm m~in}, T_{\rm m~ax} vaporpressure dependence {\rm vpd}_{\rm m~in}, {\rm vpd}_{\rm m~ax} the m axim um stom atalconductance g_{\rm sm~ax}
```


- tim ing of the default grow ing season
- maximalleafareaindex LA I_{max}
- For 9 m ost prominent vegetation types on arable land (ara) and sem inaturalland (sem)

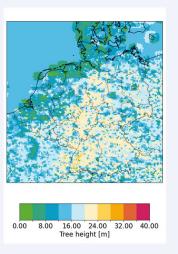
Effect of updated vegetation param eters

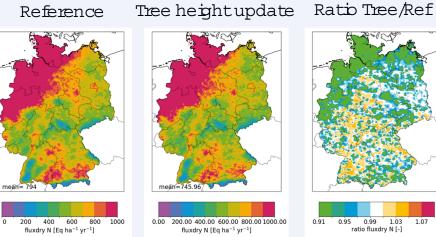

- Arable land: Maize, sunflower & fodder crops are affected most >
 - 5-10% higher reactive N-deposition flux over a year
 - Other crops: changes com pensate each other
- Sem i-naturalland: Natural grass land affected most >
 - 4% low erreactive N-deposition over a year
- More NO_v deposition throughout country
 - Relatively constant NO2 concentration profile > higher LAI, m ore deposition
- NH_x shows a spatially inhom ogeneous pattern
 - Am m on ia peak in spring due to m anure application >
 m aize & rapeseed LAI curve shift
 - Low erdeposition → transport over longer distances

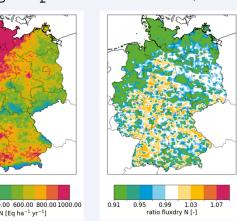


Adapted tree species and height

- Sentinel1/2 based data by Blickensdörferet al. (2024) → tree species map
- Turubanova et al. (2023) Landsatdata + ALS + GEDI → tree heightm ap
- Default value is 20 m eters in the reference case
- Test case:
 - Lowertrees in North Germany
 Mixed tree types (e.g., Oak, Spruce, 4-8 m)
 - → Expect low erdeposition in forests in the North
 - Highertrees in South-WestGerm any (Schwartzwald) (eg., Beech, Douglas Fir, 25 m and up)
 - > Expect higher deposition in Schwartzwald






Effect of adapted tree species & height on deposition

- Land use specific dry deposition flux
- Lower country average flux
- Over 10% decrease in north-west of Germ any
- Increases of ~3% in central Germ any
- Increased spatial variability of deposition
- More realistic description of bcaltree height

	Ref eq N ha ⁻¹ yr ⁻¹	Tree eq N ha ⁻¹ yr ⁻¹	Ratio Tree/Ref -
Broadleaf	626	600	0.958
Coniferous	794	746	0 940

Current & future work

- Im plem enting and testing the improved deposition module in IFS (Task 63)
- Further developm ent and evaluation of LAI param etrisation in deposition model
 - Location dependence?
 - Seasonalinfluence (e.g., dry vs w etyears)?
- Developm ent towards dynamic emissions (e.g., meteo dependence)

